
Exploring Deep Closest Point: Learning Representations for Point Cloud
Registration

Kaan Oguzhan
Technische Universität München

kaan.oguzhan@tum.de

Baris Sen
Technische Universität München

baris.sen@tum.de

Yigit Aras Tunali
Technische Universität München

yigitaras.tunali@tum.de

Kerem Yildirir
Technische Universität München

kerem.yildirir@tum.de

Abstract

Point cloud registration is defined as the task of finding a
rigid transformation that aligns two-point cloud sets, such
that the resulting point cloud is globally consistent. In re-
cent years, following the increasing availability of 3D scan-
ners and the recent advancements in deep learning in com-
puter vision, the point cloud registration task has gained
significant attention. In this project, we investigate the
method Deep Closest Point (DCP) [11] in detail. DCP pro-
poses a learning approach to the point cloud registration
problem. We evaluate the robustness of the model and pro-
pose an extension for improving the model’s performance in
real-world use cases. We show that DCP suffers when there
is no one-to-one matching between the source and target
points. Furthermore, we show that using color as an ad-
ditional input to the model significantly improves the per-
formance of the network, while reducing the required train
time. We create a new 3D point cloud dataset from Mixamo
[1] character animations and use it for training and testing
the model, and compare the models trained with Mixamo on
the Mixamo and TUM RGBD datasets [9].

1. Introduction

Point cloud registration is one of the fundamental tasks
in computer vision. Given two point clouds, we are look-
ing for the rotation and translation that transform one point
cloud such that two point clouds together are aligned. One
of the most common algorithms used in this task is the It-
erative Closest Point (ICP) [3] algorithm. ICP iteratively
optimizes for two subtasks of the problem: finding the cor-
respondents in two point clouds and finding the best trans-
formation that makes the resulting point cloud globally con-
sistent. Like many alternating optimization methods, ICP

may suffer from bad initialization and converge to a local
minimum. Many variants of ICP have been implemented
that improve the speed and accuracy of the registration [6].

Deep Closest Point (DCP) is one of the first deep learn-
ing approaches on the point cloud registration task. The
DCP Network consists of three differentiable modules and
therefore can be trained end-to-end. The first module of the
network is a point cloud embedding network, that takes the
input point cloud and using a Graph Convolutional Neu-
ral Network (GCNN) [12] generates embeddings for each
point. The second module is a transformer [10] module, that
entirely relies on an attention mechanism [2] to find global
point correspondences between two point clouds. The final
module is a singular value decomposition (SVD) module,
that uses the global correspondences outputted by the trans-
former and calculates the best rigid transformation to align
the point clouds. Figure 1 shows the detailed architecture of
DCP.

In this project, we investigate DCP in detail, identify pos-
sible improvements, and evaluate the identified improve-
ments on a new dataset “Mixamo”, which is created using
a subset of Mixamo character animations, and the TUM-
RGBD dataset [9] for objective evaluation of both models
on an unseen data. Specifically, we investigate the follow-
ing 4 points:

• The performance of DCP when the source and target
point clouds do not have a 1-to-1 mapping and ideas to
improve its performance

• Color as an additional input on the model performance

• As-Rigid-As-Possible (ARAP) [8] regularization as
additional loss signal

In the following, we summarize related work, our method,
the experiments we performed, and final conclusions.

1



(a) Network architecture (b) Transformer module

Figure 2. Network architecture for DCP, including the Transformer module for DCP-v2.

ters to learn local features. As an alternative, DGCNN [50]

explicitly recovers the graph structure in both Euclidean

space and feature space and applies graph neural networks

to the result. PCNN [3] uses an extension operator to define

convolution on point clouds, while PointCNN [25] applies

Euclidean convolution after applying a learned transforma-

tion. Finally, SPLATNet [43] encodes point clouds on a

lattice and performs bilateral convolution. All these works

aim to apply convolution-like operations to point clouds and

extract local geometric features.

Sequence-to-sequence learning and pointer networks:

Many tasks in natural language processing, including ma-

chine translation, language modeling, and question answer-

ing, can be formulated as sequence-to-sequence (seq2seq)

problems. [45] first uses deep neural networks (DNN) to

address seq2seq problems at large scale. Seq2seq, however,

often involves predicting discrete tokens corresponding to

positions in the input sequence. This problem is difficult

because there is an exponential number of possible match-

ings between input and output positions. Similar problems

can be found in optimal transport [41, 31], combinatorial

optimization [20], and graph matching [54]. To address this

issue, in our registration pipeline we use a related method to

Pointer Networks [48], which use attention as a pointer to

select from the input sequence. In each output step, a Pointer

Network predicts a distribution over positions and uses it as

a “soft pointer.” The pointer module is fully differentiable,

and the whole network can be trained end-to-end.

Non-local approaches: To denoise images, non-local

means [8] leverages the simple observation that Gaussian

noise can be removed by non-locally weighted averaging

all pixels in an image. Recently, non-local neural networks

[49] have been proposed to capture long-range dependencies

in video understanding; [53] uses the non-local module to

denoise feature maps to defend against adversarial attacks.

Another instantiation of non-local neural networks, known as

relational networks [38], has shown effectiveness in visual

reasoning [38], meta-learning [44], object detection [17],

and reinforcement learning [58]. Its counterpart in natural

language processing, attention, is arguably the most fruitful

recent advance in this discipline. [46] replaces recurrent neu-

ral networks [22, 16] with a model called the Transformer,

consisting of several stacked multi-head attention modules.

Transformer-based models [10, 35] outperform other recur-

rent models by a considerable amount in natural language

processing. In our work, we also use a Transformer to learn

contextual information of point clouds.

3. Problem Statement

In this section, we formulate the rigid alignment prob-

lem and discuss the ICP algorithm, highlighting key is-

sues in the ICP pipeline. We use X and Y to denote two

point clouds, where X = {x1, . . . ,xi, . . . ,xN} ⊂ R
3 and

Y = {y1, . . . ,yj , . . . ,yM} ⊂ R
3. For ease of notation, we

consider the simplest case, in which M = N . The meth-

ods we describe here extend easily to the M 6= N case

because DGCNN, Transformer, and Softmax treat inputs as

unordered sets. None requires X and Y to have the same

length or a bijective matching.

In the rigid alignment problem, we assume Y is trans-

formed from X by an unknown rigid motion. We denote the

rigid transformation as [RXY , tXY ] where RXY ∈ SO(3)
and tXY ∈ R

3. We want to minimize the mean-squared

error E(RXY , tXY), which—if X and Y are ordered the

same way (meaning xi and yi are paired)—can be written

E(RXY , tXY) =
1

N

N∑

i

‖RXYxi + tXY − yi‖
2. (1)

Define centroids of X and Y as

x =
1

N

N∑

i=1

xi and y =
1

N

N∑

i=1

yi. (2)

33525

Figure 1: Detailed Architecture of DCP. DCP receives the source and the target point clouds as input to the point cloud
embedding module. The point cloud embedding module is the Dynamic Graph Convolutional Neural Network (DGCNN)
[12]. The outputs of DGCNN are fed into the Transformer that helps creating an alignment between the source and target
point clouds using attention. Finally, a differentiable SVD module calculates the predicted transformation using the point
alignments.

2. Related Work

There are many deep learning approaches to solve the
point cloud registration task. Most of the works pursue a
similar approach to DCP, where they first find correspon-
dences, and then estimate the target transformation. PR-
Net [13] performs these steps iteratively to improve perfor-
mance. It also chooses a subset of points that has corre-
spondences in both point clouds to improve transformation
estimation. SuperGlue [7] uses graph attention to find cor-
responding point pairs. Deep Global Registration [4] iden-
tifies that DCP performs poorly on real-world data and ex-
cludes the points classified as outliers from transformation
estimation. RPM-Net [13] uses soft point assignments and
a weighted SVD to predict the transformation. R-PointHop
[5] focuses on learning better point features and improve re-
sults by using a more complex point feature extraction mod-
ule. TEASER [14] estimates the translation and rotation
matrices separately so that the network can learn different
weights for rotation and translation.

3. Method

Our work has two main focus areas. First, we create a
new 3D colored point cloud dataset from Mixamo character
animations. Second, we implement several improvements
to the model and evaluate their effectiveness.

3.1. Datasets

We use 2 different datasets for our experiments. We gen-
erate our own 3D point cloud dataset using Mixamo charac-
ter animations. Moreover, we use the TUM RGBD dataset
to test the model on unseen data.

3.1.1 Mixamo

Mixamo is a database of 3D characters with animations of
different lengths. Using the database, we have sampled out
10 characters with 10 random animations each. For the fi-
nal dataset, using the animations of the characters, we have
extracted different frames from each animation, resulting in
1031 different colored point clouds.

Figure 2: A sample subset of our dataset

For training set and validation set instead of generating
the data in a pre-process step and using splits, we followed
a different approach. In the two cases, our data loader loads
a random point cloud out of the 1031 samples, then applies
a random rotation & translation to the point cloud.

The validation set have a random generator with fixed in-
ternal seeds, that is independent from the global seed. This
approach guarantees that the same point cloud is loaded and

2



the same rotation and translation is generated for each ele-
ment index, while also allowing us the change the validation
set size dynamically.

For the training set, we use models that aren’t used for
the training which the model hasn’t seen yet.

3.1.2 TUM RGBD

This dataset is only used for the analysis of the trained mod-
els and therefore are never seen by the models during any of
our trainings. Colored point clouds are taken from different
frames of the sequences and used for the analysis.

3.2. Extensions to DCP

As mentioned in Section 1, we have investigated the
DCP network in detail. We have concluded that the net-
work can successfully learn to find the rigid motion, that is
applied on the source point-cloud. During the training, the
network receives two-point clouds, which are transformed
from source to target state by a randomly generated rigid
motion.

This training method, per se, was not a bad choice, al-
though it comes with a main shortcoming: In real-world
applications, the model needs to be able to handle sce-
narios where there are no perfect correspondences, such
as occlusions in the scene or imperfections due to sensory
noise. The authors did not provide any robustness evalua-
tion against these types of scenarios and assumed the source
and target states are perfect.

In our investigation, we have trained the network on the
Mixamo [1] dataset, with and without independently sam-
pled source-target point clouds pairs. Then evaluated all
networks on 2 completely different datasets: Mixamo [1]
and TUM RGBD [9].

As the commodity 3D sensors become more commer-
cially available, it is easier to get 3D point cloud data which
also has color information for each point. We identify color
as a strong signal for finding point correspondences and
evaluate the effect of this additional signal on the registra-
tion task.

3.2.1 Independent Sampling

In the original model, training was done on point clouds by
randomly rotating them and using this random rotation be-
tween the original and rotated point clouds as the ground
truth. Even though this approach works relatively well,
it has its weaknesses. It is not robust against occlusions,
noise, or partially matching scans which are mostly found in
real-life problems. This weakness was more evident when
we tried to align two frames from the TUM-RGBD dataset
which were more apart from each other. To this problem,
we tried the approach of training the model with a indepen-
dent sampling method. The main idea behind this approach

is to first rotate the point cloud but sample both the original
and the rotated point clouds at random but separately. Thus
we create examples that do not have perfect 1-to-1 corre-
spondences.

3.2.2 Adding color input

In the DCP architecture, the coordinates of points are fed
into the DGCNN network as a 3 channel input. Additional
to the 3 channel coordinate input, we feed the RGB color of
the points as 3 additional channels to DGCNN. The input
and output sizes of the layers other than the first layer of
DGCNN remains same.

3.2.3 ARAP Regularizer

Original DCP architecture used the DGCNN and Trans-
former to learn the local features of the mesh points, but in
the loss function, there was not any term for protecting local
rigidity. This is expected, since we are predicting the cor-
respondences and apply a rigid transformation accordingly.
However we wanted to achieve better correspondences by
penalizing the wrong correspondences more by adding an-
other loss term. The original ARAP regularizer proposed in
[8] enforces local rigidity when computing a (not necessar-
ily rigid) deformation, and it is computed as follows:

E (Ci, C′i) =
∑

j∈N (i)

wij

∥∥(p′
i − p′

j

)
−Ri (pi − pj)

∥∥2
(1)

where wij is the weight of the point pair, pi and p′i corre-
spond to the same point before and after transformation re-
spectively, pj and p′j correspond to the neighbours of pi and
p′i, and Ri is the rotation aligning the local patches around
pi and p′i. In our case, we are computing a rigid transforma-
tion, so local rigidity is preserved and we do not need a Ri

for every pair. We also omit the weighting for simplicity.
Our loss term is like the following:

E (Ci, C′i) =
∑

j∈N (i)

∥∥(p′
i − p′

j

)
−R (pi − pj)

∥∥2 (2)

4. Experiments

All dataset results are generated by models trained on
Mixamo dataset, then evaluated on the dataset mentioned in
the upper left corner of the corresponding table.

For each comparison we use Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Absolute Er-
ror (MAE) on both the rotation matrix (R) and the transla-
tion matrix (t).

3



4.1. Color input

We test the effect of the additional color input on the per-
formance of DCP. For this, we train the baseline architec-
ture with and without the color input. Network trained with
additional color input significantly outperforms the model
without the color input. Table 1 and 2 show the performance
of the networks on the TUM RGBD and Mixamo datasets,
respectively.

TUM RGBD MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP 387.982239 19.697266 11.285736 0.029045 0.170427 0.113288
DCP+ Color 0.240215 0.490117 0.334967 0.000094 0.009678 0.007570

Table 1: DCP color improvement comparison

Mixamo MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP 51.460548 7.173601 4.399128 0.043476 0.208509 0.075243
DCP + Color 0.171919 0.414631 0.106271 0.000035 0.005910 0.001755

Table 2: DCP color improvement comparison

4.2. ARAP Regularizer

To evaluate whether the additional ARAP regularization
loss helps to generalize better, we perform several runs of
training with and without ARAP regularization. Table 3
shows the performance of DCP with and without ARAP
regularizations. Since the additional color input showed sig-
nificant improvement, we also evaluated the effect of ARAP
regularization on the improved model. Table 4 and 5 show
the effect of ARAP regularization on the DCP model with
additional color input. Results show that ARAP regular-
ization slightly improves the performance in most of these
settings.

Mixamo MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP 51.460548 7.173601 4.399128 0.043476 0.208509 0.075243
DCP + Arap 48.080051 6.933978 4.212567 0.050855 0.225510 0.076915

Table 3: DCP without color using ARAP regularization

TUM RGBD MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP + Color 0.240215 0.490117 0.334967 0.000094 0.009678 0.007570
DCP + Color + ARAP 0.169369 0.411545 0.270199 0.000075 0.008643 0.007129

Table 4: DCP with color using ARAP regularization

Mixamo MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP + Color 0.171919 0.414631, 0.106271 0.000035 0.004833 0.001755
DCP + Color + ARAP 0.171727 0.451673 0.083366 0.000044 0.006611 0.001589

Table 5: DCP with color using ARAP regularization

4.3. Independent Sampling

We evaluate the effect of sampling source and target
points independently during training. We compare the base-
line model with and without independent sampling on the

test data, meaning that source and target point clouds are
sampled independently. As expected, we see that model
with independent sampling outperforms the baseline in al-
most all use cases. Table 6 and 7 show the results of the
comparison.

Mixamo MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP 53.342667 7.303607 4.438653 0.048586 0.220422 0.077097
DCP + Independent Sampling 44.15807 6.645154 4.342775 0.030093 0.173474 0.067707

Table 6: DCP with independent sampling comparison

TUM RGBD MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

DCP 390.456390 19.759970 11.853582 0.030235 0.173882 0.119560
DCP + Independent Sampling 256.066223 16.002069 10.963472 0.027706 0.166452 0.120926

Table 7: DCP with independent sampling comparison

4.4. Final Comparison

Finally, we compare our best model with the original
DCP trained on ModelNet40 dataset. Our best model uses
additional color input and ARAP regularization, is trained
on our Mixamo dataset. Table 8 shows that our best model
significantly outperforms the original model.

TUM RGBD MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

Original DCP 1.573519 1.254400 0.890428 0.000277 0.016652 0.01259
DCP + Color + ARAP 0.171727 0.451673 0.083366 0.000044 0.006611 0.001589

Table 8: Original DCP compared with our best result

5. Conclusion
In this project, we implemented several extensions to

the DCP network and showed their effectiveness. Our
experiments show that color is a strong signal for point
matching and significantly improves the final performance.
Another finding we reached is that the originally trained
network does not work well with source and target point
clouds which do not correspond one-to-one but rather have
overlapping points and different points. To perform bet-
ter in scenarios like this, we train DCP with independently
sampled source and target point clouds. We also believe
this training will improve the network performance in real-
world scenarios, such as aligning point clouds in a frame-to-
frame tracking scenario. We also used ARAP regularization
as an additional loss in the training and showed its effective-
ness on registration performance.

References
[1] Adobe. Mixamo model dataset, 2018. 1, 3
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014. 1

[3] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data

4



structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 1

[4] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration, 2020. 2

[5] Pranav Kadam, Min Zhang, Shan Liu, and C. C. Jay Kuo.
R-pointhop: A green, accurate and unsupervised point cloud
registration method, 2021. 2

[6] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of
the icp algorithm. In Proceedings third international confer-
ence on 3-D digital imaging and modeling, pages 145–152.
IEEE, 2001. 1

[7] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks, 2020. 2

[8] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In Proceedings of the Fifth Eurographics Sym-
posium on Geometry Processing, SGP ’07, page 109–116,
Goslar, DEU, 2007. Eurographics Association. 1, 3

[9] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 1, 3

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 1

[11] Yue Wang and Justin M. Solomon. Deep closest point:
Learning representations for point cloud registration. CoRR,
abs/1905.03304, 2019. 1

[12] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1, 2

[13] Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen,
Oliver Van Kaick, Hao Zhang, and Hui Huang. Rpm-net.
ACM Transactions on Graphics, 38(6):1–15, Nov 2019. 2

[14] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast and
certifiable point cloud registration, 2020. 2

5


