Indirect Visual Inertial Odometry with Optical Flow

Kerem Yildirir Poyraz Kivanc Karacam
Technical University Munich Technical University Munich
kerem.yildirir@tum.de poyraz.karacam@tum.de
Yigit Aras Tunali

Technical University Munich

yigitaras.tunali@tum.de

August 9, 2021



Contents

1 Introduction & Project Goals

2 Visual Odometry

3 Indirect Visual Odometry with Optical Flow

4 Optical Flow
4.1 LevelPyramids . . . ... ... ... ... ... ... ... ...
42 Trackingapoint . . . . . . . . . .. e
4.3 Warp Optimization . . . . . . ... ... ... .. ...

5 Experiments and Results

6 Conclusion & Possible Extensions

~N 39O &



1 Introduction & Project Goals

As the processors shrink in size and grow in compute power, many robots are
becoming more and more integrated with businesses. Most of the tasks in these
cases, require the robot to be autonomous and unmanned. This requirement brings
out many additional challenges. One of which is the need for localization and
mapping, for the robot to interact with its environment. To perform their tasks
well and navigate their environment without any problems, the algorithms in use
have to be quick, accurate, and robust. Camera-based motion estimation is one
such technique. In this project, we extend a stereo visual odometry implementa-
tion with a sparse optical flow tracking system into the visual odometry pipeline as
an alternative to feature descriptor matching, aiming to improve the quality of the
generated trajectory. To achieve this goal, we adopted the optical flow approach
described in [8], which we henceforth refer to as the BASALT approach. Addi-
tionally, we also throw out the stereo descriptor matching in the original baseline
and replace it with stereo matching using optical flow from the left camera to the
right camera. We then evaluate the resulting maps and predicted trajectories of the
base and the extended visual odometry implementations both visually and quanti-
tatively by plotting the trajectories and also computing relative and absolute pose
errors for both versions. We also compare the impact of BASALT optical flow
with OpenCV’s Lukas-Kanade approach [4] and include these results in our eval-
vation. Finally, we identify the shortcomings of the method and discuss further
improvements.

2 Visual Odometry

With the rise of automation and the popularity of autonomous robots, visual nav-
igation is becoming more and more sought after. Visual odometry is one of the
approaches used widely in Robotics to determine the position and orientation of
a robot. A visual odometry system can be implemented using a mono, stereo, or
RGB-D camera, depending on the needs of the project. While the monocular cam-
era approaches are inexpensive and can have a small form, they suffer from scale
ambiguity. On the other hand, stereo approaches mimic the human visual system
and can easily estimate the scale [5, 2]. The stereo approach has its drawbacks
such as a bulkier set-up, requirement of calibration, and a good synchronization
between cameras.

In this project, we have an initial visual odometry system that uses a stereo
camera set-up. The whole pipeline and the operations done in each step can be
seen in the figure 1. To achieve real-time performance, only a subset of the frames
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Figure 1: Complete stereo Visual Odometry Pipeline.

is used in the optimization step. The first step of the pipeline consists of key-
point detection for images of both cameras for that frame. Here, we detect the
features using Shi-Tomasi corner detector [7] and compute ORB descriptors [6]
for each point. Afterward, these keypoints are matched using their descriptors over
the stereo set-up and inliers are picked via the epipolar constraint. Then the de-
scriptors are matched between the map and the current frame by projecting the
landmarks onto the image plane. Using these landmark-to-keypoint matches and
PnP (Perspective-n-Point) the camera is localized and the pose is found. This is
followed by the addition of new landmarks and removal of old keyframes accord-
ing to some thresholds and finally, a bundle adjustment optimization is done over
the keyframes that are still not removed.

3 Indirect Visual Odometry with Optical Flow
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Figure 2: Modified stereo VO Pipeline with optical flow.

In figure 2, the extended pipeline can be observed. The most substantial change
is the removal of descriptor matching and the approach of optimization over keyframes.
For the optical flow to work, a frame-to-frame approach was necessary where the
optimization was over a window of a certain number of frames in each step. The
keypoints detected in a frame are propagated to the next ones. As long as the
tracking of keypoints is not lost we also know to which landmark they correspond.
This approach also allows us to circumvent the landmark matching step used in
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the baseline visual odometry implementation. If the keypoint is no longer tracked,
the landmark is marked as “inactive”. If the same point is found again during the
algorithm it will be registered as a new landmark and the effects of drift will be
clearly visible in the constructed map, as it can be observed in 3. This snapshot
has been taken after visiting the same spot in the world for the third time, the gray
points are “inactive” landmarks while light blue ones are the currently active ones.
It is clear that points that were supposed to correspond to the same landmark are
registered as different ones and this is further enhanced by the effect of drift.

Drift Effect

Figure 3: Effect of drift on the constructed map.

Figure 4: Stereo matching with BASALT.



Figure 5: Stereo matching with Lukas-Kanade.

The propagated points are matched between cameras again using optical flow.
The remaining parts of the pipeline stay the same as the original implementation.
As for the optical flow algorithm, two approaches were taken into consideration
with one being the basic Lukas-Kanade algorithm and the other an advanced ver-
sion, namely the BASALT approach [8]. While both optical flow algorithms per-
form well for the overall tracking of keypoints through frames, we have observed
that the OpenCV’s optical flow approach is less robust to situations where the as-
sumptions of the optical flow are slightly violated. The more problematic part is
the usage of optical flow for stereo matching. In our experiments, we have ob-
served that the OpenCV’s [4] Lukas-Kanade algorithm is not able to find proper
stereo matches for the keypoints and fails almost all the time, which can be seen in
5. This is most likely because the Lukas-Kanade approach can’t handle the base-
line between the cameras. An example for this case can be seen for the BASALT
case in 4 where the stereo matched points are robust and correspond to each other

properly.

4 Optical Flow

Our main contribution in this project is the integration of a KL.T-based optical flow
tracking, which we adopted from [&], as a point tracking system. We use optical
flow in both frame to frame and left to right stereo frame matching.

4.1 Level Pyramids

Given a frame, we construct a level pyramid. The pyramid consists of 3 levels,
where the i level is the scaled-down frame with a scaling factor of 2'~!. Note
that level 1 corresponds to the given frame.



When tracking points across two frames, we track them on each level of their re-
spective pyramids. If a point is considered valid on each level, then it is accepted as
a potential inlier. Using such a scheme enables us to track points robustly against
large displacements.

To find valid points between i*”* levels P; and P! of two pyramids, we first track the
keypoints from P; to find their correspondences on P;. Then, we track the found
correspondences on R-’ back to P;. if a correspondence from Pz-’ does not lead back
to its origin point on F;, it is considered an outlier and discarded.

4.2 Tracking a point

We use a patch-based system for tracking. Given a point, we use pre-defined offsets
to construct an octagonal patch centered around it. The patches help us incorporate
the local information around a point. This local information is used to formulate a
dissimilarity term that is invariant to intensity scaling.

To find a warp 7" € SE(2) that characterizes the motion of between two patches
across two images ¢ and ', we use the same residual term defined in [8] as

_ It/(T.TZ) . It(l‘l)

Tz(f) IT/ Tt s Va:i €N (1)

where I;(x;) is the intensity value of the point x; in image ¢, € is the set of points
in a patch, and I; is the mean intensity of the patch in image ¢.

4.3 Warp Optimization

Optimizing the warp comprises two main parts:
e Computation of the point gradients
e Updating the warp until convergence

When computing the point gradients, we utilize floating point representations.
Given a floating point coordinate (x,y), we bilinearly interpolate its value using
the four surrounding pixel values (u,v), (v + 1,v), (u,v+ 1), and (u + 1,v + 1),
where u = |x] and v = |y]. Then, we also interpolate the points in one unit dis-
tance to the point (z,y) along the vertical and horizontal axes. Finally, using the
additionally interpolated points, we apply the central difference method to estimate
the gradients of the point (x,y). Figure 6 demonstrates the described method.



L (xy)
P ‘

P D (ut,v+1)
greeneeeeeeees po froemeeeeenes ’
(x-1y) i I (x+1,)

O” : o O
S b b .
v) i
i {x,y—1)
E o

Figure 6: Interpolation scheme for the point (x,y).

Note that this method would not work without utilizing the floating-point rep-
resentation, since for a discrete point the gradient would be 0.
Once the point gradients are calculated, the Jacobian is computed using these val-
ues. Then, we estimate the inverse Hessian using Cholesky Decomposition and
apply the Gauss-Newton method to the residual term from (1) to find the incre-
ment £ € R3. Finally, updates on the warp are calculated as:

RITI=R.exp(§), #T =t +¢ (2)

where R’ and ¢/ are the rotational and translational parts of the warp 7" during the
4 iteration, respectively.

5 Experiments and Results

We compare the performance of our implementation with the baseline visual odom-
etry. Furthermore, we also add the results of our method by using first the Lukas-
Kanade optical flow from OpenCV and the BASALT approach. For quantitative
analysis of our results, we use Relative Pose Error (RPE) and Absolute Pose Error
(APE) metrics [3].



Method rmse mean median std min max
OpenCV 0.09 0.03 0.02 0.09 0.00 4.29
Ours 0.03 0.03 0.02 0.02 0.00 0.07
Original Odometry  0.04  0.03 0.03 0.02 0.00 0.17

Table 1: Relative Pose Error

Method rmse mean median std min max
OpenCV 4.24 3.57 264 228 128 10.55
Ours 0.12 0.11 0.11 0.04 0.01 0.21

Original Odometry  0.16  0.14 0.14 0.07 0.01 0.37

Table 2: Absolute Pose Error

In tables 1 and 2, the RPE and APE results can be seen. For all the results
Vicon Room 1 01 from EuRoC MAV [1] dataset have been used. While testing the
performance of the OpenCV method, Lukas-Kanade optical flow was used only to
track points in consecutive frames and not for stereo matching. For stereo matching
again the BASALT approach is used since Lukas-Kanade failes to find a sufficient
amount of matches. The results of the BASALT approach and the original odom-
etry are close, but the BASALT approach performs slightly better with having a
lower max error. As for the OpenCV version, it fails more often while tracking
keypoints, thus the trajectory estimation error grows very large at the failure se-
quences. The figures 7 and 8 are also helpful to visually analyze how well the
tracking ensues. As expected, the BASALT approach outperforms other versions
in all metrics, however, it still suffers from the accumulated drift.
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6 Conclusion & Possible Extensions

In conclusion, we have observed that using optical flow as a feature tracker allows
us to track the keypoints more robustly than descriptor matching. However, it
also introduces new complexities, such as having an extra parameter as a threshold
for the number of currently tracked points, which will be used to decide if new
keypoints should be detected.

The sudden increase in number of keypoints at each detection step also lowers
the performance of the system for a couple of frames. A possible workaround for
this is dividing the image into a grid and detecting points only in grid cells where
the number is below a threshold as illustrated in 9. Unfortunately, this approach
doesn’t solve every problem. There might be times when a grid cell will only have
a white wall or a textureless object, which will violate the brightness consistency
assumption of optical flow algorithms. Movements with relatively large baselines
also cause the tracking to fail, due to the violation of assumptions made by the
optical flow. While testing the performance of the OpenCV method, Lukas-Kanade
optical flow was used only to track points in consecutive frames and not for stereo
matching. For stereo matching again the BASALT approach is used since Lukas-
Kanade failes to find a sufficient amount of matches. Since we are following a
frame-to-frame approach, the failure of tracking for a few sequences affects the
overall results.

Full Image

Feature points in grid cells

Figure 9: Grid-wise feature detecting approach.

Another shortcoming of the system is that as tracking progresses the error ac-
cumulates and the results start to drift. Since we only use a set number of previous
frames, the same landmarks that were discarded before will be re-observed again
and will be registered in the map again with a slight drift. This is a well-known
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problem in systems such as ours and can be solved with a loop closure algorithm,
which detects the situations when a landmark is re-observed and corrects the cam-
era pose accordingly. Overall, loop closure will increase the robustness of the
algorithm against drift and make the reconstructed map more consistent.

Finally, our current frame-to-frame approach achieves a relatively satisfying
run-time speed even without multi-threading. We haven’t had the chance to work
on parallelizing it due to time constraints. Admittedly, the run-time performance
can be considerably increased by some structural changes and enabling multi-
threading. If the grid-wise feature points approach is implemented, it can also
be easily parallelized since the grids will be independent of each other.
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