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Figure 1: Complete pipeline of the NeRF [8]

Abstract

Neural Radiance Fields [8] are used to achieve state-
of-the-art novel view synthesis of complex scenes with a
fully connected non-convolutional deep network. One of the
main disadvantages of NeRFs is that they require many im-
ages of the scene to be synthesised, which are preferably
egocentric. This is usually not the case for many outdoor
scenarios, especially for autonomous driving related data-
sets. In this work, we address the lack of imagery by in-
troducing additional constraints on the optimisation of the
Neural Radiance Field by using depth information provided
by a LIDAR sensor.From experiments and various ablation
studies we have conducted, we have concluded that using
the constraints of a LIDAR sensor alone is not sufficient to
achieve the desired results. In addition to depth constraints,
we extend and experiment with the notions of extrapolated
Lidar depth, feature loss, semantic loss, GAN-based loss
and nverse-depth smoothing loss. We compare the results,
improvements and shortcomings of all the methods applied
above and present the best combination that our research
has produced.

1. Introduction
The goal of Neural Radiance Field is to create a novel

synthesis of a static scene from a given set of egocentric
images. For this purpose, a Neural Radiance Field, FΘ,
is optimised. FΘ can be thought of as a 5D function that
takes as input the 3D position (x, y, z) and the viewing di-
rection (θ, φ) and gives as output the RGB colour and den-
sity (R,G,B, σ) at that point. For training, a random batch
of rays are shot from pixels of input images, using the reg-
ular volume rendering method discussed in [8], the colour

at that pixel is calculated and compared to the ground truth.
This process is trivially differentiable and can ultimately be
reduced to traditional alpha compositing.

To achieve the state of the art, the NeRFs take two
other important steps. The first is position coding of the
(x, y, z) coordinates to prevent bias towards learning lower
frequency features. The second is hierarchical volume sam-
pling, which trains a coarse and a fine mesh, achieving a
similar goal to importance sampling. Although NeRFs pro-
duce impressive results, they struggle with some issues that
arise when applied on outdoor scenarios, such as the lack
of required image volume and apperances of dynamic ob-
jects. Combined with the lack of egocentric data in our
autonomous driving scenario, the quality of the resulting
synthesis drops immensely.

We modify the structure shown in Figure 1 so that the
LIDAR depth information is also used as input and influ-
ences the optimisation procedure. We took the approach
from DSNeRF [4] as a basis. In addition to using the depth
information, we extend the model with a feature loss and
additional depth operations to further improve the perfor-
mance and complete the missing information from the LI-
DAR scans. In addition to the methods mentioned above,
we have also experimented with and implemented some
methods from previous works to further improve the per-
formance of our approach. Thus, both Semantic Loss [12]
and a GAN-based loss were implemented. Apart from the
GAN-based loss, which was abandoned due to time con-
straints and complexity, all additional constraints either re-
duce the time required for training or directly improve the
quality of the synthesised images.

2. Related Work
2.1. Depth-supervised NeRF: Fewer Views and

Faster Training for Free

One of the researches that comes closest to what we want
to achieve is depth-supervised NeRF [4]. The basic idea is
to augment regular NeRFs with depth monitoring. Using
the additional depth signals, the authors were able to reduce
the number of images required while optimizing the Neural
Radiance Field to be suitable for indoor static scenes. The
main difference in our work is the use of outdoor scenes



and mainly non-egocentric data. As a starting point, we will
adapt the depth monitoring part of this work to synthesize
plausible novel views with fewer images.

2.2. pixelNeRF: Neural Radiance Fields from One
or Few Images

A final work we examined that addresses the lack of
enough images is the pixelNerf approach [11]. The authors
combine the regular NeRF approach and additionally train
a CNN to learn certain scene priors to reduce the number
of images needed for synthesis. Since our data will mainly
be outdoor scenes in an autonomous driving scenario, learn-
ing scene priors could improve our performance and quality
immensely.

2.3. Putting NeRF on a Diet: Semantically Consis-
tent Few-Shot View Synthesis

In the DIET-NeRF [5] approach, the authors try to im-
prove the few-shot capabilities of NeRFs by introducing
additional constraints to the optimisation process. They ex-
tract high-level semantic attributes from arbitrary poses to
use in a loss term for monitoring the optimisation from dif-
ferent poses. The semantic attributes are extracted using a
pre-trained CLIP[10] model, and the semantic loss signif-
icantly increases the performance of the model even with
only a few input images.

3. Datasets
For this project, we are mainly using KITTI-360. Since

our goal is to improve the view synthesis of outdoor scenes
and also use LIDAR data, KITTI was a natural choice. As
it contains many sensors and labelled data, we hoped to use
these additional inputs to further improve our synthesis.

4. Methods
4.1. LIDAR Depth Loss

We took DSNeRF as a basis and modified it to work
with the pose and depth data from the KITTI-360 dataset.
Since DSNeRF was not designed to handle outdoor scenes,
its performance drops significantly when trained on uncon-
strained scenes. We solved this problem by projecting our
scene and LIDAR depths into an NDC space. We convert
our LIDAR depths to the range [0, 1], where 0 is the near
plane and 1 is the far plane. To convert our depth map
from Euclidean space to NDC space, we use the formula
ndc depth = 1− (1/real depth).

4.2. Feature Loss

We follow [5] to force our network to have a better per-
ceptual similarity with the GT images. We use a VGG19
network pretrained on Imagenet to extract features from the

rendered and GT images. Then we use a L1 loss between
these two feature vectors to guide our optimization process.
We experimented with different layers of the VGG19 net-
work for feature extraction, but ultimately decided on us-
ing the CONV1-1, CONV2-1, CONV3-4, CONV4-4 and
CONV5-4 layers with weights [0.1, 0.1, 1, 1, 1]. Although
we were inspired by the DIET-NeRF approach, we strug-
gled with memory issues that led us to change their method.
We selected a random section of the rendered image and
shot rays from those pixels. We modified the training to
randomly sample some rays to have gradient flow so that
the backpropagation operation would fit in the memory we
were working with.

4.3. Semantic Loss

We follow the work of Semantic-NeRF [12] to create an
additional fully connected head that predicts the semantic
class of the queried pixels. This head is created before the
viewing-direction information is fed into the network, since
the semantic segmentation of the view does not depend
on the direction of sight. To extract semantic groundtruth
classes for training, we use DeepLab v3 [2] pretrained on
Cityscapes dataset [3]. We use this additional segmentation
information to improve the synthesis quality and create a
semantic map for unseen camera poses.

(a) LIDAR Scan (b) Semantic Map

(c) Depths filled + filtered (d) Segmentation info leveraged

Figure 2: Depth Extrapolation

4.4. Depth Extrapolation

One of the biggest problems we faced with LIDAR data
was that depth values were only recorded up to a certain
height of the image. This resulted in us obtaining depth
maps that were only half filled and mostly lacked informa-
tion above a certain line, as seen in 2a. We used an approach
similar to [6] to extrapolate the missing depth information,
and also used a bilateral filter to eliminate generated outlier
values as can be seen from 2c. We also include the seg-
mentation map in 2b created for the segmentation loss to
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fill pixels corresponding to a sky with nearly infinite depth
values. With these steps, we are able to improve the con-
tribution of LIDAR depth data to our network and create a
smoother and more accurate depth map for novel views as
can be seen in 2d.

4.5. Inverse Depth Smoothness Loss

Because of the way we handled the depth extrapolation
step, the extrapolated depth values had to be adjusted. Sim-
ply filling in the missing values and using filters to limit
the noise still resulted in unwanted artefacts. To smooth
the depth values and regulate the structure of the predicted
depths, we use the image-aware inverse depth smoothing
loss as described in [1] with the following formula.

Smoothness Loss = |∂xdij | e−‖∂xIij‖ + |∂ydij | e−‖∂yIij‖

4.6. Adversarial Loss

Following [9], we use an adversarial loss to guide the
network to produce higher quality images. We adapted the
discriminator from [7] to compare the image patches we
created in section 4.2 with the patches we extracted from the
GT images. We assume that our NeRF network is a genera-
tor and use the discriminator to calculate an adversarial loss
between patches. However, we discarded the adversarial
loss for now because the NeRF network was not powerful
enough to fool the discriminator and we had problems with
mode collapse during training.

5. Results

Method PSNR↑ SSIM ↑ LPIPS ↓
NeRF 23.28 0.9437 0.2127
DSNeRF 22.62 0.9319 0.2595
Ours 23.46 0.9443 0.2089

Table 1: Quantitative results

For all results, we use every loss we have discussed so
far, with the exception of Adversarial Loss, which we have
abandoned. Figure 2 shows the simple LIDAR scan input
and the steps of our depth completion approach. The re-
sulting output Figure 2d is significantly better than using
half-filled depth information from the LIDAR input data.
This additional informative depth map helps us to further
utilise the dense depth information from LIDAR. The dif-
ferences between a normal NeRF, DS-NeRF and our ap-
proach can be seen in the Figure 4. One of the reasons why
DSNeRF performs worse is that it does not work in NDC
space and does not give correct results for an unconstrained
scene. Our approach and regular NeRF use NDC space for
the calculations and we also use the semantic segmentation
map to assign almost infinite values to the sky. All these

steps together improve our results both visually and quanti-
tatively.

We also show that NeRF can be used for semantic seg-
mentation of outdoor scenes. This is especially important
for autonomous driving tasks. The semantic loss added to
NeRF also helps to get better metrics and better novel views.
An example of semantic segmentation of a new scene can
be seen in Figure 3.

Finally, we show that the feature loss can also be used
to improve synthesis quality. The performance of feature
loss is highly dependent on the size of the patch to which
feature extraction is applied. Also, we can only backpropa-
gate through a limited number of pixels from these patches
during training, again due to memory constraints. In our
tests, we have seen that including feature loss improves
some metrics, but ultimately slows down the training pro-
cess. If the memory problem could be solved or a more ef-
ficient method to calculate and use this loss could be imple-
mented, we believe that the contribution of this loss could
be improved even further.

(a) Semantic GT (b) Semantic Prediction

Figure 3: Semantic Segmentation
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Figure 4: Results
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6. Ablation Study

We have conducted ablation studies using different com-
binations of our approaches to better analyse their perfor-
mance quantitatively. As shown in Figure 2, extrapolating
the LIDAR scan without applying a depth smoothing loss
degrades the performance of the reconstructed scene, al-
though it significantly improves the estimated depth of the
scene. Adding a depth smoothing loss to our extrapolated
LIDAR scan to correct for incorrectly filled depth values
and fill in the holes in the estimated depth of the scene sig-
nificantly improves all three metrics. Adding feature loss to
our overall loss also appears to improve the LPIPS score as
expected. While semantic loss improves the PSNR metric,
it worsened the LPIPS score. Since our final method takes
all losses into account, the feature loss and semantic loss
seem to balance each other in terms of LPIPS and PSNR
scores.

As explained in the previous sections, due to memory
constraints, we had to use downsized images as input for
most of our runs (usually by a factor of 4), which affects
both the performance of the network and some of our losses.
The patch-based approaches we had to implement for some
of our losses also reduce their performance, as they do not
work as well when they receive partial areas of the image as
input. Figure 5 shows the error comparison with the LPIPS
metric between NeRF, DSNerF and our approach. As can
be seen, our method causes fewer errors overall, especially
in areas where regular NeRF and DSNeRF have quite high
errors.

Method PSNR↑ SSIM ↑ LPIPS ↓
LIDAR 23.14 0.9446 0.2200
Extrapolated 23.11 0.9463 0.2217
Extrap.+Smooth. 23.44 0.9465 0.2089
Extrap.+Smooth.+ Feat. 23.40 0.9459 0.2018
Extrap.+Smooth.+Semant. 23.38 0.9435 0.2274
Extrap.+Smooth+Feat.+Semant. 23.46 0.9443 0.2089

Table 2: Ablation Results

7. Conclusion

In summary, our main contribution is the inclusion of
LIDAR depth values in the NeRF optimisation procedure.
We also address the problem that LIDAR data from au-
tonomous driving scenarios are incomplete by using depth
extrapolation and inverse depth smoothing losses. Using
these two approaches and exploiting the results from se-
mantic segmentation, we can further improve the quality of
our depth map by dividing the scene into foreground and
background/sky so that the depth values can be improved.
Finally, we also included a feature loss term corresponding
to the L1 distance between the feature vector extracted from
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Figure 5: LPIPS Error Analysis, Lighter Green = Higher
Error

the GT image and the synthesis image, further increasing
the image quality of the output.

There are still many improvements possible for the meth-
ods tried. One of them is to improve the segmentation qual-
ity. Since the segmentation results are used to change the
depth values, incorrect or faulty predictions of classes can
lead to unwanted artefacts. Another approach would be
to improve the extrapolation performance by using differ-
ent kernel schemes or even fully integrating it into the net-
work and training it in an end-to-end fashion. There is also
room for improvement for feature loss. Since we use patch-
based feature extraction, different extraction methods could
be used to work better in these patches due to memory con-
straints. Other networks such as a CLIP ViT could be used
for feature extraction process as well.
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