
Reconstructing Learned Geometry and Texture on Human Bodies

Anton Baumann
Technical University Munich
anton.m.baumann@tum.de

Poyraz Kivanc Karacam
Technical University Munich

poyraz.karacam@tum.de

Umesh Rajesh Ramchandani
Technical University Munich
umesh.ramchandani@tum.de

Yigit Aras Tunali
Technical University Munich
yigitaras.tunali@tum.de

Abstract

Most of the prior work of inferring 3D texture focuses
on texture atlases or colored voxels which have their short-
comings. The texture atlas approach requires UV-mappings
hence introduces discontinuities, while the voxel approach
is quite memory inefficient and has limited resolution. Other
approaches such as predicting RGB colors at XYZ coordi-
nates given 2D images also exist but in Texture-IF-Net [6]
it is shown that high-quality 3D reconstructions for texture
and geometry can be achieved from partial 3D scans. The
Texture-IF-Net and the IF-Net [5], which are used to recon-
struct geometry, create a pipeline to completely reconstruct
3D geometry and texture from partial scans. In this project,
we investigate both IF-Nets in detail and adjust them for
real-world scenarios. We propose several data augmenta-
tions on the SHARP dataset and training on top of the pre-
trained IF-Net networks. With the augmented dataset and
training we aim to generalize the Single View Reconstruc-
tion from a front view that IF-Nets can accomplish to any
viewpoint with real data scanned by a Kinect camera.

1. Introduction
Complete 3D scans can be accomplished using expen-

sive and high-tech cameras, which require a studio setup.
In the last few years commodity, handheld scanners became
more and more widespread. One of the successful dense-
reconstruction works with the hand-held RGB-D scanners
was demonstrated in Kinect Fusion [11]. Since it is unre-
alistic to expect the same performance from the handheld
scanners as with studio set-ups, the resulting scans can be
noisy or partially missing.

The approach in Texture-IF-Net [6] involves a 2 stage
pipeline. The first one being the geometry reconstructing
IF-Net. The IF-Net accepts various inputs, making it quite
flexible. It can work with low and high-level resolution

voxel grids, sparse or dense point clouds, either complete
or incomplete. Since the main goal of this project is to re-
construct humans from a Single View partial scan, the fo-
cus of our approach will be the Point Cloud version of the
network. From the input, a renderable continuous and com-
plete surface is reconstructed.

Figure 1. Complete pipeline of the IF-Net.

As can be seen from figure 1, the input first is
used to create a multi-scale deep feature grids of shape
FFF 1,FFF 2, . . . ,FFF k ∈ FK×K×K

k with k = N
2k−1 and N be-

ing the input dimension. In previous works the 3D shape
would have been encoded into a latent vector z ∈ Z ⊂ Rm

and then used to learn a neural function to classify if a point
in R3 is inside the surface or outside.

f(z,p) : Z × R→ [0, 1] (1)

Instead of the latent vector approach, in this work the
shape is encoded into a multi-scale deep feature grids. The
3D convolutions are applied similar to their 2D counterpart.
The convolutions are applied, then followed by down scal-
ing the input, creating growing receptive fields and channels
but shrinking the resolution. The earlier feature grids such
asFFF 1 capture shape detail and the later ones likeFFF k capture
global structure.

{p+ a · ei · d ∈ R3|a ∈ {1, 0,−1}, i ∈ {1, 2, 3}} (2)

1

Figure 2. Complete pipeline of the Texture-IF-Net.

For reconstructing the geometry, the point coordinates
aren’t classified directly but extracted from the learned deep
feature grids at those locations. Since the encoding has a
3D structure that is aligned with the input, this is easily ac-
complished compared to other methods. With feature grids
being discrete the 3D continuous points are queried using
trilinear interpolation. To also encode the neighborhood in-
formation at all the grids, a distance d ∈ R of any point that
will be extracted is also included with formula (1) (where
ei ∈ R3 is the i’th Cartesian unit vector).

The second part of the pipeline consists of the IF-net with
texture that uses the reconstructed geometry to predict col-
ors on it. The model accepts as input the partial textured
scan and the complete geometry, in total 4 channels, as can
be seen in 2. The geometry input is reconstructed with the
original IF-Net. This network works in a similar way where
again multi-scale learned deep feature grids are created with
3D convolutions. The point, just as in the IF-Net, is again
extracted the same way continuously and then fed to a point-
wise decoder, which is parametrized by a fully connected
neural network with ReLU activations to regress the RGB
color at that exact point.

For this project, we are interested in the SVR (Single-
View Reconstruction) version of the network. The perfor-
mance of the networks was tested, for the case of SVR, with
front-facing synthetic data. We observed that the network
which was pre-trained with this kind of data was not able
to generalize well for scans from other views. To circum-
vent this shortcoming we propose data augmentations to the
original dataset which include random rotations and projec-
tions to create more Single-View data that is seen from dif-
ferent angles. We then use this extended dataset and train
on top of a pre-trained SVR model. In the following sec-
tions, we summarize related work, our methods for the data
augmentation, experiments, and results.

2. Related Work
Over the years there have been many methods to recon-

struct 3D objects and humans. Most notable of these meth-
ods, for humans, are voxel, implicit, parametric and mesh
based representations.

2.1. Parametric & Mesh Based

These kinds of approaches try and learn the parame-
ters of a parametric model or learn to fit the human on a
mesh-based model. One of the limiting factors of these ap-
proaches is the quality of the parametric or the mesh model.
Most of the research done with these models uses the SMPL
[9] model or templates [8]. Some examples of such work
include clothed 3D reconstruction using 2D images from a
single RGB camera or video sequences [2, 4, 3] and predict
deformations from the base model. Another shortcoming of
the model-based CNN approaches is that the results being
over-smoothed.

2.2. Voxel Based

Voxel-based approaches [13, 15, 7] tend to produce more
details than the mesh-based ones, because the predictions
align with the input data. Most of these approaches process
image pixels. One of the shortcomings of these approaches
is the possibility of having missing parts of the body. To
circumvent this some approaches [13] do a post-process of
fitting the SMPL [9] model to the reconstruction. Voxel-
based approaches also have limited resolution bounded by
their grid size.

2.3. Implicit Functions

Truncated Signed Distance Functions have been used to
reconstruct static [11] and dynamic scenes with non-rigid
tracking [10] before. Using similar approaches and com-
bining it with the SMPL model produces robust and accu-
rate tracking [14]. There are works that take as an input an

2

image and produces humans in clothing using an implicit
network [12]. The reconstruction is done by predicting the
occupancy of 3D points is done point-wise with regards of
the spatial location and the 2D image features.

3. Methods
3.1. Data Processing

Figure 3. Data Processing Pipeline. Given an initial mesh, it is
first aligned and normalized. Then a random rotation is applied
to simulate a random single view and a partial mesh is obtained.
Finally, points are sampled from partial and complete meshes to
prepare the final input for the model.

In this project, we used the same dataset used in [6]. Ini-
tially, the dataset consists of 3D meshes of people acting out
various poses with varying clothing, and the meshes have
full texture and geometry. Some of the people have regular
clothing, and some of them have minimal fitness clothing.
We process the initial data to create a new dataset that would
serve our end goal. This process comprises the following
steps:

• Alignment and normalization

• Random rotation

• Point cloud voxelization

In the end, the processed data consists of partial meshes
of people that are observed from a single view. The com-
plete data processing pipeline is demonstrated in Figure 3.

3.1.1 Alignment and normalization

To align a given mesh, we first compute its centroid and
apply the following translation:

δ = (xc, yc, zc), t = (−xc, 0,−zc) (3)

where δ is the mesh centroid and t is the applied transla-
tion. Then, we normalize the height of the mesh and apply

a second translation:

t′ = (0,−0.5, 0) (4)

and obtain a mesh that is centered around the origin point
and has a height that falls inside the interval [−0.5, 0.5].

3.1.2 Random rotation

To each aligned & normalized mesh we apply 4 different
random rotations around the vertical axis to create 4 partial
meshes observed from different views.
After a rotation is applied, the view is rendered as a 2D
image, and then back-projected into the 3D world with the
known depth. Thus, we obtain a partial point cloud of a
surface from a single view. The inverse of the initial random
rotation is applied to the obtained point cloud for spatial
consistency. We further query these points on the complete
mesh to remove any unmatched points from the unobserved
space along with their corresponding faces. As a result, we
obtain a partial mesh observed from a single view.

3.1.3 Point cloud voxelization

Point cloud voxelization is done similarly as in [5] and [6].
For geometry reconstruction, we create a grid with 256 res-
olution and [−0.5, 0.5] bounding box. Then we sample
10, 000 points on the partial surface, and query them in the
created grid and find the occupancies.
For texture reconstruction, we again create a grid with the
same properties. Then we densely sample 100, 000 points
on the partial surface and find their occupancies. In addi-
tion, we also densely sample and voxelize 100, 000 on the
full but untextured surface.
Finally, all the voxelized information is encoded as de-
scribed in [5] and [6] to prepare the final input for the re-
spective models.

3.2. Real World Data

The Microsoft Kinect Azure camera is a consumer de-
vice that can give various outputs in RGB-D format. But the
networks take voxel representation as input. So we had to
design a pipeline to convert Kinect’s RGB-D output to fulfill
our needs i.e. in our case, occupancy grids. We decided to
do this task by first converting the RGB-D output to a point
cloud representation using Microsoft’s Kinect SDK. Later
we observed that this input has a lot of extra noise (i.e. Sur-
rounding Objects) in it. We then decided to clean this input
by masking the depth channel of the Kinect’s output with
the human segment mask obtained by Microsoft Kinect’s
SDK. As you can see in figure 4 we get the masked depth.
And then generating a point cloud from this masked input
gives us the result with the only human subject. Later we
preprocessed this point cloud by taking a bounding box of

3

the input point cloud and rotating it in an upright position by
applying the inverse of its rotation to the point cloud. Later
this point cloud was converted to a voxel representation.

Figure 4. Human Segmentation of Pointcloud Input.

4. Results & Experiments

Figure 5. Texture reconstruction from partial pointcloud input
given the ground truth geometry. Left-most image is the ground
truth, middle and right-most images are model reconstructions
from a back and a front view respectively. The partial mesh is
observed from a front view.

We have tested the integrity of the models in two differ-
ent scenarios. First, we looked at the texture reconstruction
only and used the ground truth geometry without the tex-
ture in the input. Afterwards, we applied full inference on
the partial point cloud data by initially reconstructing the
geometry and then using this reconstruction in the input to
further infer the full texture.

We observed that the performance of the texture recon-
struction model depends on the observed view. In cases
where the view is captured mostly from the front, the model
performs well as can be seen in figures 5 and 6. However,
when the view is captured mostly from the back, it fails to
do a realistic reconstruction.

We argue the reason thereof is, most of the time the front
view is more detailed and the back view is relatively more
uniform in terms of color distribution. A person might have

Figure 6. Texture reconstruction from partial Point Cloud input
given the ground truth geometry. Top row images are views from
the ground truth, and the bottom row views are from the model
reconstruction.

Figure 7. Texture reconstruction from partial Point Cloud using
complete pipeline. The view was created with an angle from be-
hind.

a t-shirt and jacket with the front open, and the back view of
such a person would only contain the backside of the jacket
and the t-shirt wouldn’t be visible. In such a case (Figure
7) if the person is observed from the back, it is hard for the
model to create finer details and it rather assumes the recon-
structed color distribution should have less variance.
The most challenging cases in geometry reconstruction are
the ”side-ways” views. When a part of the person, such
as an arm or a leg, is almost completely occluded because
of the view (Figure 8), the reconstruction is not able to re-
generate these missing parts. But, when the limbs are cap-
tured properly, as in a mostly back or a front view, we ob-
served that the model performs well.

In some cases, ground truth meshes might contain color
deformations. The learned model has a smoothing effect on
the regions which prevents it to be influenced from such
deformations and actually corrects them (Figure 9). On
the other hand, the said smoothing effect also prevents the
model the retain fine texture details.

Besides reconstructing the synthetic dataset, we also

4

Figure 8. A fully reconstructed mesh. The observed view on the
left, and a front view of the same mesh on the right. A side-ways
case where the geometry reconstruction doesn’t perform well.

Figure 9. A snapshot from a ground truth mesh. Some ground
truth meshes have ”corrupted” color regions. However, texture
reconstruction is not affected from such cases.

Figure 10. Couple of examples reconstructed with the full pipeline.

tested our geometry and texture models on real-world data
from the Kinect Azure camera. Since the data coming from
the Kinect camera is not from the same distribution as our
training data (real vs synthetic) and has inherent noise, we
expected that the reconstructions wouldn’t be pristine. The
results can be seen in the figure 11, while it is not perfect it
performs rather well given the problem is a gap-filling be-
tween simulation and the real world.

Figure 11. The final reconstruction on real world data from point
cloud captures. Left is the original input, middle and right is the
reconstruction.

5. Evaluation
For observing quantitative metrics, we have used the

original evaluation metrics from the CVPR Sharp 2021
Challenge [1]. In table 12 we have compiled the evaluation
results for 20 predicted samples from our test set. For Sur-
face Face Areas, the metrics for Reconstructed Mesh and
the Ground Truth should be closer to each other. Since
Reconstructed Mesh being smaller than Ground Truth in-
dicates that some part of the mesh is missing or has a lesser
area than the ground truth. And a larger metric indicates
exaggeration of some form in the reconstruction.

Shape Accuracy and Texture accuracy are a measure of
similarity between the Reconstructed Mesh and the Ground
Truth. The value of the reconstructed mesh shows the sim-
ilarity of a sampled point on the Reconstructed mesh with
a triangle on the Ground Truth Mesh. And Ground Truth
shows the similarity of a point in the Ground Truth mesh to
the reconstructed mesh. Texture Accuracy performs a simi-
lar function to shape Accuracy, it takes a Euclidean distance
of the color of the point in the source mesh and a similar
point in the destination mesh. This metric is subjected to
minimization.

Surface hit rates indicates similarity between the source
and the destination mesh. For this metric, a value of 1 is
the perfect score. Our method gets 0.93 when measured
from Reconstructed mesh to Ground Truth, which shows
that 93% of points in the source mesh have a similar point
in the destination mesh.

Reconstructed Mesh GT Mesh
Surface face areas 0.6783707222 0.744
Shape Accuracy 3.25e-03 7.94e-02

Texture Accuracy 3.08e-03 8.16e-02
Surface Hit Rates 9.38e-01 8.68e-01

Figure 12. Metrics for the reconstruction

5

6. Conclusion
Based on the experiments and observed results, we found

that the model’s performance is overall satisfactory. Al-
though most of the reconstructions done by the model
achieve good results, there are some edge cases like los-
ing body parts that are mostly occluded in the view. Since
the main focus of this project was to generalize the model
to work with different view angles and with real-world data
scanned by a Kinect camera, the final step we took was to
conduct such tests. We have seen that we were able to re-
construct humans in an acceptable manner.

There are some improvements one can use to get better
results, especially for the real-world data. First one is using
an SMPL or SMPL-X model as a prior in a post-processing
step and non-rigidly deform it to fill out the missing body
parts. To improve on the texture reconstruction, perform-
ing Segmentation or addition of a positional encoding layer
might help in getting better results for the texture predic-
tions. Another step would be to train both models even more
epochs. Due to hardware and time limitations the amount of
epochs trained for both models were not as high as the orig-
inal paper [6] and we trained over the pretrained models to
have a good prior. We are confident that more training, and
especially training from scratch instead of using pretrained
models as the base weights for the model, would also in-
crease the performance considerably.

References
[1] Sharp2021 metrics. https : / / gitlab . uni .

lu / cvi2 / cvpr2021 - sharp - workshop/ -
/blob/master/doc/evaluation.md, 2021.

[2] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar,
Christian Theobalt, and Gerard Pons-Moll. Learning to re-
construct people in clothing from a single RGB camera.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1175–1186, Jun 2019.

[3] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruc-
tion of 3d people models. In IEEE Conference on Computer
Vision and Pattern Recognition. CVPR Spotlight Paper.

[4] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Detailed human avatars
from monocular video. In International Conference on 3D
Vision, pages 98–109, Sep 2018.

[5] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, jun 2020.

[6] Julian Chibane and Gerard Pons-Moll. Implicit feature net-
works for texture completion from partial 3d data. In Eu-
ropean Conference on Computer Vision (ECCV) Workshops.
Springer, August 2020.

[7] Andrew Gilbert, Marco Volino, John Collomosse, and
Adrian Hilton. Volumetric performance capture from min-

imal camera viewpoints, 2018.
[8] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard

Pons-Moll, and Christian Theobalt. Livecap: Real-time hu-
man performance capture from monocular video, 2019.

[9] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015.

[10] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2015.

[11] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In ISMAR, pages 127–136. IEEE Computer
Society, 2011.

[12] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion, 2019.

[13] Gl Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin
Yumer, Ivan Laptev, and Cordelia Schmid. Bodynet: Volu-
metric inference of 3d human body shapes, 2018.

[14] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai
Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-
sion: Real-time capture of human performances with inner
body shapes from a single depth sensor, 2018.

[15] Zerong Zheng, Tao Yu, Yixuan Wei, Qionghai Dai, and
Yebin Liu. Deephuman: 3d human reconstruction from a
single image, 2019.

6

https://gitlab.uni.lu/cvi2/cvpr2021-sharp-workshop/-/blob/master/doc/evaluation.md
https://gitlab.uni.lu/cvi2/cvpr2021-sharp-workshop/-/blob/master/doc/evaluation.md
https://gitlab.uni.lu/cvi2/cvpr2021-sharp-workshop/-/blob/master/doc/evaluation.md

	. Introduction
	. Related Work
	. Parametric & Mesh Based
	. Voxel Based
	. Implicit Functions

	. Methods
	. Data Processing
	Alignment and normalization
	Random rotation
	Point cloud voxelization

	. Real World Data

	. Results & Experiments
	. Evaluation
	. Conclusion

